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Abstract. We present an exact time-dependent semiclassical formulation of the dynamics of a δ-atom
subjected to an oscillating electric field. Through a simple approximation the results of Ergenzinger’s more
intuitive analysis are obtained. We also comment on the important role played by the imaginary tunnelling
time t0, which is quite distinct from the usual adiabatic tunnelling time.

1 Introduction

Whenever a quantum system is amenable to a semiclas-
sical treatment, one is aware that a dividend is soon to
be declared: despite the fact that the semiclassical ap-
proximation holds for small �, it is not a perturbative ex-
pansion and hence it is not usually plagued by difficulties
that accompany perturbation theories. The semiclassical
approach has been applied successfully to many systems,
notably those exhibiting the tunnelling phenomenon in its
various manifestations [1]. For convenience one can think
of the states of the system as almost stationary states since
the tunnelling probability is small enough to be ignored
and the particle flux current is essentially constant [2].
Given this state of affairs, one carries out the calculation
of transition amplitudes in energy space. There is, how-
ever, a dearth of applications of the method to systems
that are truly time dependent and this paucity of model
problems is now proving to be serious [3]. Because the en-
ergy is no longer fixed, even approximately, in this second
case, one cannot go into energy space in a simple way. This
exposes a lurking anxiety about the semiclassical method:
although the tunnelling phenomenon may be calculable,
this does not mean that we fully comprehend it [3,4]. In
other words, the time-dependent case demands greater un-
derstanding of the tunnelling phenomenon. Admittedly,
the issue in question harks back, in part, at the founda-
tions of quantum theory itself and may involve more than
just time dependence. Nevertheless, one expects that use-
ful, if modest, insights into the tunnelling problem can be
gained by examining tractable time-dependent problems.

Not long ago, Ergenzinger [5] applied the semiclassical
method to the ionization of a one-dimensional δ-atom by
an oscillating electric field. The interplay between the field
and the attractive δ-potential has been a natural compli-
cation hampering a complete analytical solution. Ergen-
zinger’s approach of using time-averaged phases and lean-
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ing upon an intuitive application of the time-independent
theory to a time-dependent system, proved highly success-
ful in reproducing predictions obtained previously from
numerical simulations [6]. Nevertheless, in light of the re-
marks of the foregoing paragraph, the issue of time depen-
dence was not sufficiently appreciated, nor was his for-
mulation based on a full development of the machinery
available for semiclassical calculations. In this paper, we
wish to supply the justification for Ergenzinger’s method
and elucidate some details about tunnelling from a time-
dependent setting. In fact, within the framework of the
semiclassical method, our formulation is exact. While
physically tunnelling is always a time-dependent process,
the formalism in current use conveniently looks upon it
within the framework of stationary-state problems and, in
so doing, demystifies the tunnelling process to the point
of rendering further inquiry into the phenomenon unnec-
essary [3]. As this seems to be no longer the case in a time
dependent setting, one must now grapple with the issue
squarely. Moreover, in recent years the theme of a quan-
tum tunnelling time has become fashionable once more
and the new development that Ergenzinger’s work brings
with it is that, unlike most of the model systems being
studied in this connection, his problem is an almost ex-
actly solvable time-dependent one. As we will see below an
imaginary tunnelling time will be required to reproduce re-
sults predicted previously by simulation calculations. We
might mention that a study of time-dependent tunnelling
problems to which standard methods cannot be applied
straightforwardly had been made not long ago [7].

The physical system under study has a long history,
that we cannot go into in detail here [8]. Because our
main focus is in providing insight into the semiclassical
approach applied to a time-dependent problem, it will suf-
fice to observe that the ionization of the δ-atom continues
to be a focal point of current theoretical and experimental
research [5,6]. The system is a one-dimensional δ-potential
atom subjected to an external oscillating electric field. In
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the dipole approximation the relevant Schrodinger equa-
tion is

i�
∂

∂t̃
Ψ(x̃, t̃) =

(
− �

2

2m
∂2

∂x̃2 − αδ(x̃) − µx̃ cos ωt̃

)
Ψ(x̃, t̃),

(1)
in which it will be convenient to represent distance and
time by x̃ and t̃, respectively. With the external field
switched off, the atom has a single bound state [9] with
the ground-state energy, E0 = −mα2/2�

2, and a normal-
ized time-independent wave function, Ψ0(x̃) = (mα/�)1/2

exp(−mα|x̃|/�). Hence unlike the usual case of tunnelling
from an initial positive-energy state, the present problem
deals with an initial bound state. Three physical dimen-
sionless parameters can be identified. There is, first, the
ratio of the ponderomotive energy µ2/4mω to the pho-
ton energy �ω, z = µ2/4m�ω3. This is a measure of the
field strength and we expect spikes in the ionization rate
at intervals of ∆z = 1. The second is the Keldish factor,
which is the ratio of the adiabatic tunnelling time to the
period of the electric field: γ = αω/�µ [10]. One is inter-
ested in a Keldish factor of order unity, because approxi-
mation methods are known to fail in that regime, while the
semiclassical theory should do well. Small γ (<< 1) cor-
responds to tunnelling; large-γ processes are best treated
within a multiphoton description and will not be of inter-
est here [11]. Finally, the third, though not independent,
parameter is the ratio of the binding energy to the photon
energy, nio = 2γ2z.

From an examination of the interplay of these param-
eters within the context of the δ-atom, we can expect an
imaginary time to play an important role. Suppose we
keep γ and ω constant while allowing the field strength
and binding energy to vary. Increasing the field strength
gives rise to a quadratic growth in z; and nio increases
linearly with z. Hence, an increase in the field strength
implies a correspondingly much larger rise in the bind-
ing energy and this means that the ionization rate would
decrease with increase in z. This decay is exponential in
z because the rate depends on the number of available
ionizing atoms. It follows that the decay constant associ-
ated with z does not depend on z or nio and hence must
be a function of γ. Thus we expect an imaginary time
t0 = t(γ) to be associated with z in the expression for the
ionization rate. Naturally, we surmise that this time is a
measure of the tunnelling time of the system. Of course,
the next logical question is: is the tunnelling time real and
measurable? Without commenting on the latter issue, we
will argue below that an imaginary tunnelling time is real
and meaningful in our context.

The rest of the paper is organized as follows. Section 2
is devoted to the calculation of the propagator for the δ-
atom. We first employ the semiclassical formula to obtain
the exact propagator of an electron is an oscillating field,
with the δ-interaction switched off. Then we carry out a
perturbation expansion of the full propagator in terms of
the δ-interaction. Next, in Sect. 3, the tunnelling process is
incorporated into the propagator obtained in the previous
section and an expression for the probability amplitude
that the atomic electron is not ionized is given. Then,

in Sect. 4, we comment on the imaginary tunnelling time
described in the previous paragraph and defined in Sect. 3.
Finally, we sum up our conclusions in Sect. 5.

2 Semiclassical propagator

This section is devoted to the derivation of the propaga-
tor for the δ-function atom subject to an external electric
field. Following Ergenzinger [5] we define new variables

h =
�ω3

µ2 , γ =
αω

�µ
, t̃ = ωt, x̃ =

ω2

µ
x, (2)

and recast (1) in the form

ih
∂

∂t
Ψ =

(
− h2

2m
∂2

∂x2 − γhδ(x) − x cos t

)
Ψ. (3)

This equation resembles a standard quantum mechani-
cal problem in which h takes the place of Planck’s constant
�. Therefore, the usual semiclassical method is applicable
in the limit of small h. Since h = 1/(4mz) is essentially
the ratio of photon energy to ponderomotive energy (for
unit mass) this limit corresponds to very intense electric
fields.

As a first step toward obtaining the required propaga-
tor, let us apply the semiclassical method to the simpler
problem of a free charged particle in the presence of an
oscillating electric field. In the dipole approximation the
Lagrangian of this problem is

L0(x, ẋ, t) =
1
2
mẋ2 + x cos t. (4)

From the equation of motion, mẍ − cos t = 0, we may
write the classical action as

S0[xcl(t)] =
1
2
mxẋ

∣∣∣∣
t′′

t′
+

1
2

t′′∫
t′

x cos tdt, (5)

where the end points are x(t′) = x′ and x(t′′) = x′′. The
classical path xcl for this system is just

mxcl(t) = − cos t + cos t′ + mx′

+
mx′′ − mx′ + cos t′′ − cos t′

t′′ − t′
(t − t′), (6)

whose corresponding action is

S0[xcl] = S0[x′′, t′′; x′, t′] =
1
2
m

{
x′′ sin t′′ − x′ sin t′

+
mx′′ − mx′ + cos t′′ − cos t′

t′′ − t′
(x′′ − x′)

}

+
1

2m

{
− 1

2
(t′′ − t′) − 1

4
(sin 2t′′ − sin 2t′)

+(cos t′ + mx′)(sin t′′ − sin t′)

+
mx′′ − mx′ + cos t′′ − cos t′

t′′ − t′

× ((t′′ − t′) sin t′′ + cos t′′ − cos t′)
}

. (7)
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It will also be convenient to have an expression for the
time difference t′′ − t′,

t′′ − t′ =
x′′ − x′

v0
+

cos t′′ − cos t′

mv0
, (8)

where we defined the momentum mv0 = (mx′′ − mx′
+ cos t′′ − cos t′)/(t′′ − t′).

We calculate the exact propagator from the semiclas-
sical formula (note that � is replaced by h) [2,12]

K0(x′′, t′′; x′, t′) =

√
1

2πih

∣∣∣∣ ∂2S0

∂x′∂x′′

∣∣∣∣e(i/h)S0[x′′,t′′;x′,t′]

=
√

m

2πih(t′′ − t′)
e(i/h)S0[x′′,t′′;x′,t′]. (9)

That this is the exact propagator for L0 can be verified
by expanding an arbitrary path x(t) connecting the end
points (x′′, t′′) and (x′,t′) in terms of the classical path:
x(t) = xcl(t) + δx(t). After an integration by parts the
classical action is written as a sum of two terms,

S0[x] = S0[xcl] +

t′′∫
t′

1
2
m(δẋ)2dt, (10)

with the understanding that δx(t′) = δx(t′′) = 0, by virtue
of the end point conditions. It follows that the propaga-
tor is exp(i/h)S0(xcl) multiplied by the propagator for a
particle evolving freely from the origin back to the ori-
gin [13]. This is just what we have above. The exactness
of the semiclassical method in this case comes as no sur-
prise, because the semiclassical method is known to yield
the correct result for potentials that are at most quadratic
in x, even when the coefficient is time dependent [14].

The Lagrangian for the original system described by
(3),

L(x, ẋ, t) =
1
2
mẋ2 + x cos t − aδ(x), (11)

where a = hγ, can be addressed by following the method
of Lawande and Bhagwat [15]. We expand the propagator
for this system by treating the δ-potential as a perturba-
tion. Thus we write formally

K(x′′, t′′; x′, t′)

=
∫

D[x(t)]e(i/h)(S0[x(t)]+S1[x(t)])

=
∫

D[x(t)]e(i/h)S0[x]

(
1 +

∞∑
n=1

1
n!

(
i
h

)n

(S1)n

)

≡ K0(x′′, t′′; x′, t′) + K1(x′′, t′′; x′, t′). (12)

In the above, the path differential measure is denoted
by D[x(t)] and K0 is the propagator for the unperturbed
system given by (9). Equation (12) also serves as the defi-
nition of K1, the contribution of the δ-potential to the full
propagator.

To proceed efficiently with the rest of the calculation,
it is convenient to single out the nth term of the sum,

Gn(x′′, t′′; x′, t′) =
1
n!

∫
D[x(t)]e(i/h)S0[x](S1)n, (13)

K1(x′′, t′′; x′, t′) =
∞∑

n=1

(
i
h

)n

Gn(x′′, t′′; x′, t′). (14)

By virtue of the δ-interaction, it follows that

(S1)n = (−a)nn!

t′′∫
t′

dtn

tn∫
t′

dtn−1 . . .

t2∫
t′

dt1

n∏
i=1

δ(xi), (15)

where the time-order sequence t′ ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤
t′′ holds; finally,

Gn(x′′, t′′; x′, t′)

= (−a)n

t′′∫
t′

dtn

tn∫
t′

dtn−1 . . .

t2∫
t′

dt1K0(x′′, t′′; 0, t′)

×
n∏

k=2

K0(0, tk; 0, tk−1)K0(0, t1; x′, t′). (16)

To make further advance, define the Laplace transform
of Gn:

G̃n(x′′, s; xn, 0) ≡
∞∫
0

e−stdtGn(x′′, t; xn, 0). (17)

From the theory of Laplace transforms [16] the convo-
lution of two functions f(t) and g(t) is defined by

(f ◦ g)(t) ≡
∞∫

−∞
f(x)g(t − x) = (g ◦ f)(t), (18)

and the convolution theorem states that
∞∫
0

e−st(f ◦ g)(t)dt =

∞∫
0

e−stf(t)dt

∞∫
0

e−svg(v)dv. (19)

We will apply these results to the evaluation of Gn(x′′,
t′′; x′, t′). We go back to (9) and approximate K0(x′′, t′′; x′,
t′) by discarding all the oscillatory terms in the exponent;
in other words, replacing them by their time averages. For
instance we have

K0(x′′, t′′; 0, tn) ≈
√

m

2πih(t′′ − tn)
exp

{
im

2h(t′′ − tn)
x′′2

− i
4hm

(t′′ − tn)
}

. (20)

This step is equivalent to Ergenzinger’s procedure of
replacing the phase in the transition amplitude by its time-
averaged value [5]. In our case this step is taken so the
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conditions of the convolution theorem apply. This is the
only approximation in the paper; although an exact evalu-
ation is possible that would require numerical techniques.
It now follows from (16) that

G̃n(x′′, s; xn, 0) ≈ (−a)nK̃0(x′′, s; 0, 0)

×[K̃0(0, s; 0, 0)]n−1K̃0(0, s; x′, 0), (21)

in which the Laplace transform of, e.g., K0(x′′, t; 0, 0) is

K̃0(x′′, s; 0, 0)

≈
∞∫
0

e−st

√
m

2πiht
exp

(
im
2ht

x′′2 − i
4hm

t

)
dt

=
√

m

2ihς
exp

(
−2

√
−ς

imx′′2

2h

)
, (22)

where ς ≡ s + i/4hm. The symbol ≈ is used in various
places as a reminder of our simplification of the phase by
ignoring the oscillatory terms.

Referring to (14), we take the inverse Laplace trans-
form,

K1(x′′, t′′; x′, t′)

= − iam

2ih2

1
2πi

γ+i∞∫
γ−i∞

estds
1

ς1/2

× 1

ς1/2 + a

(
im
2h3

)1/2 exp

(
−2ξ

√
− im

2h
ς

)
, (23)

in which ξ ≡ |x′| + |x′′|. Let ς = ω2, use an integral rep-
resentation of {ω + a(im/2h3)1/2}−1; define also the half-
circle contour C in the complex t-plane, which is a line
parallel to the imaginary axis and closed by a circular arc,
to obtain (T = t′′ − t′):

K1(x′′, t′′; x′, t′)

= − am

2πih2 e−iT/4hm

∫
C

dω

∞∫
0

dζeTω2−2ξω(−im/2h)1/2

×e−ζ(ω+a(im/2h3)). (24)

We deform the contour C to coincide with the imagi-
nary axis, and after some manipulations, we find

K1(x′′, t′′; x′, t′) =
am

h2 e−iT/4hm

∞∫
0

dsG(s + ξ, T ; 0, 0)

×e−ams/h2
, (25)

where the free particle propagator in our variables is given
by

G(s, T ; 0, 0) =
√

m

2πihT
exp

{
− m

2ihT
s2
}
. (26)

Looking back at the derivation of (25), we recall that
the phase factor e−iT/4hm (where T = t′′ − t′) arose from
the non-zero times in K0(x′′, t′′; 0, tn) [see (20)]. However,
in the next section, we will be interested only in the case
that x′ and x′′ coincide with the origin and for full cycles
of the electric field, that is, for t′′ = 2πn and t′ = 0.
Referring to (8), this means that t′′ − t′ may be effectively
replaced by zero. Henceforth, we will not carry this factor.
An identical factor in eiS0/h can also be removed from
K0(x′′, t′′; x′, t′). So, putting all the elements together, we
now have the required propagator,

K(x′′, t′′; x′, t′)

≈
√

m

2πih(t′′ − t′)
e(i/h)S0[x′′,t′′;x′,t′]

−1
2

m|γ|
h

e−m|γ|ξ/he−mγ2(t′′−t′)/2ih. (27)

Note that γ < 0. From the preceding discussion, we stip-
ulate that S0 is given by (7) but without the term lin-
ear in t′′ − t′. Also in the limit that h → 0, we have
(1/2)(m|γ|/h)e−m|γ|ξ/h → δ(ξ), so the second term may
be replaced by [5]

−δ(ξ)eimγ2(t′′−t′)/2h, (28)

that is, for small h, there is a strong localization of the
wave function around the origin. The importance of local-
ization properties had been previously reviewed by Casati
and Molinari [17].

3 Tunnelling propagator

The goal of this section is the inclusion of a single tun-
nelling event in the propagator obtained above. The
atomic electron, initially at position (y, t′ = 0), propagates
to the final position (x, t′′) while undergoing a tunnelling
event in between, at (z, t = t0). It will be convenient to
choose complete cycles so that t′′ = 2nπ. The bound state
corresponding to the delta potential; γhδ(x) in (3) has
the negative energy E0 = −mγ2/2 which corresponds to
a complex momentum of mẋ = ±imγ [9]. For simplicity,
we assume that at the time t0 the electron has just this
complex momentum [5]. To ensure the exponential decay
of the wave functions, let us pick

ẋ(t = t0) = +iγ. (29)

The time t0 is imaginary,

t0 = i ln
(
mγ +

√
(mγ)2 + 1

)
(30)

and sin t0 = imγ and cos t0 = (1 + (mγ)2)1/2. However,
the time t0 is not unique, for tunnelling could also occur at
times t0 + πk, k = 0, 1, 2, 3, . . . Because of the oscillations
of the electric field, these events are interpreted as the
tunnelling of the electron to the right from the origin [for
t0 + 2kπ] or to the left [for t0 + (2k + 1)π]. Then using the
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composition rule for propagators and (27) and (28), the
required result is

K(x, t′′; y, t′ = 0)

=
∫

dz
∑

k

K(x, t′′; z, t0 + πk)K(z, t0 + πk; 0, t′)

=
∫

dz

{∑
k

(K0(x, t′′; z, t0 + πk)K0(z, t0 + πk; 0, t′)

−K0(x, t′′; z, t0 + πk)δ(|y| + |z|)e−i(mγ2/2h)(t′′−t0−πk)

−K0(z, t0 + πk; y, 0)δ(|x| + |z|)e−i(mγ2/2h)(t0+πk))

+δ(|x| + |y|)δ(|y| + |z|)e−i(mγ2/2h)t′′
}

, (31)

where k = 0, 1, 2, 3, . . . such that 0 ≤ πk ≤ t′′.
The effect of the electric field on the atomic electron is

that of rendering the bound state metastable through tun-
nelling. In a static picture of the situation, the bound state
has an exponentially decaying probability of tunnelling
through the potential barrier leaving the atom ionized.
This can be accounted for phenomenologically by adding
to the ground energy E0 a negative imaginary part. Fol-
lowing Ergenzinger [5] this additional term is taken to be
the time average of h/2 times the decay rate calculated
for a static barrier, γx using the standard WKB formula.
Thus we make the replacement

E0 =
mγ2

2h
→ mγ2

2h
− i

γ2

2

√
3h
πγ3 e−2m2λ3/3h ≡ Ē0, (32)

to the ground-state energy. The evaluation of (31) now
proceeds straightforwardly,

K(x, t′′; y, 0) =
√

m

2πiht′′

×e(im)/(2ht′′)[x−y+ 1
2m (cos t′′−1)]2

×e(i)/(4hm)(sin 2t′′+2mx sin t′′)

+δ(|x| − |y|)e−it′′Ē0/h

−
∑

k

e−i(t′′−t0−πk)Ē0/h

√
m

2πih(t0 + πk)

×e(i/h)S0[x,t0+πk;y,0]

−
∑

k

e−i(t0+πk)Ē0/h

√
m

2πih(t′′ − t0 − πk)

×e(i/h)S0[x,t′′;y,t0+πk], (33)

where the sum is from k = 0 to 2n−1 and the action terms
S0 are calculated from (7) without the term linear in the
time difference. This is then the full propagator including
tunnelling effects.

The first term of (33) simply describes the propaga-
tion of a negative energy electron (in an oscillating field)
without ever coming in contact with the δ-potential at
the origin. This term will not be of interest in connection
with ionization. The next term is the background term:

the electron is confined to the origin and evolves tempo-
rally in that position. There the field, being zero, has no
effect on the electron. The third term stands for the elec-
tron interacting only with the field until t = πk; then it
tunnels into the atom from this time to a time t = πk + t0
and thereafter remains in the atom until the final time
t′′. Clearly this is a ‘non-ionizing’ event. Finally, the last
term describes the particle remaining bound to the atom
from t′ = 0 to t = πk; then it tunnels out from this time
to t = πk + t0 and continues propagating, subject only to
the electric field, until the final time t′′. Thus there are
four possible outcomes and the scenario Ergenzinger was
looking into is given by the second and fourth terms. The
sum over k encapsulates the interference phenomenon of
all the wave packets tunnelling at different times.

The wave function at the time t′′ is calculated by ap-
plying the propagator to the ground state,

Ψ(x′′, t′′) =
∫

dx′K(x′′, t′′; x′, t′)Ψ0(x′), (34)

where only the second and last terms of K contribute to
ionization. The probability amplitude p for the electron
remaining bound is the projection onto the ground state,

p =
∫

dx′′Ψ(x′′, t′′)Ψ0(x′′). (35)

In both equations we may use for the ground-state
wave function the expression 2(h/mγ)1/2δ(x), which holds
for small h. This effectively forces x′ and x′′ to coincide
with the origin. Recall also that we set t′′ = 2πn, and
t′ = 0 [cf. remarks at the end of Sect. 3]. Our results are
identical to Ergenzinger’s and we refer to his paper for
graphs of the ionization rate [5].

4 Discussion

We discuss here some salient points about the imaginary
time t0 introduced in (30). The atomic electron propa-
gates in complex time: under the electric field it evolves
in real time whereas tunnelling takes place in the imagi-
nary time between t0 and the final time. This is essentially
the Buettiker–Landauer idea which associates tunnelling
with a process evolving in imaginary time while real-time
propagation occurs in the perpendicular (independent) de-
grees of freedom [18]. Unfortunately, at present there is
no unified consensus about the tunnelling (also traversal
and sojourn) time [19]; in fact, there are several competing
and even contradictory ideas. However, it seems clear that
an imaginary time τ0 can be usefully associated with the
tunnelling process and we may take for it an expression
proposed by Ivlev and Mel’nikov [8], namely

τ0 = −Im
∂

∂E
S(x′′, x′; E), (36)

in which S is the action in energy space. To estimate τ0, we
take for S the exponent of (22), where s = E/h. Setting
x′′ = |E0|, x′ = 0, we obtain

τ0 =
i
2
mγ, (37)
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which, for small mγ, is of the same order of magnitude
as t0. We will point out below, however, that t0 is quite
distinct from the adiabatic tunnelling time.

Although the complex time coordinate is a useful de-
vice for describing tunnelling processes, it is really crucial
in the present instance, since t0 appears in the ionization
rate [cf. (33)–(35)] and plays an important role in fitting
the rate to the results obtained from numerical simula-
tions. Actually it is much more important than the decay
time [which can be extracted from (32)] whose inclusion
alters the results imperceptibly. In (32), we introduced
a complex energy whose imaginary part had the task of
mimicking the decay in time of the ionization rate due
to tunnelling. Similarly the time t0 mimics the decay of
the ionization rate as a function of the electric field en-
ergy. This ionization rate as a function of field energy is
not a simple exponential owing to the delicate interference
effects arising from the sum over k in the propagator.

Suppose that the field oscillates slowly so we have an
almost static case. If the field is doubled, z is quadru-
pled. We can still keep γ constant by also doubling the
binding strength of the atom. Then the tunnelling time is
unchanged and the ionization rate remains the same. But
in reality the ionization rate decays exponentially with z
(for fixed γ) as noted in the Introduction and this is borne
out by the graphs of Ergenzinger [5]. The quantity t0 is a
measure of this decay and must be related with the truly
time-dependent dynamics of the system. From this we can
see some features distinguishing the adiabatic tunnelling
time from t0. The former is a measure of the duration re-
quired by a lower-energy particle to penetrate a potential
barrier; it is also related to the depletion of the number of
particles available for tunnelling in time. The imaginary
time t0 is connected with the interplay between atomic
binding and the electric field in which binding takes the
dominating role; it also measures the increasing tendency
of the atom to remain intact as the binding energy and the
field strength grow in pace. It is clear that a deeper anal-
ysis of t0 is required and that the semiclassical approach
is well poised to address this issue.

A puzzling point might be why the bound-state energy
for the field-free case was used in the calculation for the
time t0 in (30) for the full atom-in-field problem. Suppose
we solve (3) approximately by replacing any sin2 t by its
time average, i.e., 1/4. Then an approximate bound solu-
tion is

Ψ ≈ e−mγ|x|e(−h/(2i)mγ2+1/(4ihm))t

× e−(x/ih) sin teγ cos t. (38)

We now take the time average of the phase and calcu-
late the corresponding wave function in momentum space
to find the poles occurring exactly at the same place where
they do for the field-free case. Therefore, when we employ
a time-averaged phase (consistent with the approximation
used above), the momentum corresponding to the bound-
state has the same numerical value for the field-free and
non-zero field cases.

Earlier, we had observed that t0 = t(γ). Although we
have no basic theory for t0, (30) satisfies three essential
features that the tunnelling time should possess:

(a) as γ → 0, t0 → 0, because tunnelling no longer takes
place;

(b) γ ≥ t0 always because t0 is an actual tunnelling time
while γ is for the fictitious (reference) adiabatic tun-
nelling time;

(c) t0 cannot grow as fast as γ because an increase in γ
can arise from an increase in the frequency of the field,
which in turn makes tunnelling more likely to occur.

5 Conclusion

We have presented an essentially exact formulation of the
dynamics of a δ-atom subjected to an oscillating electric
field within a time-dependent semiclassical framework (i.e.
�ω3/µ2 → 0). By approximating the phase by its time-
average value, we obtained the results of Ergenzinger. We
also highlighted the important role played by the imagi-
nary tunnelling time t0, which is distinct from the adia-
batic tunnelling time.
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